

DEPARTMENT OF CHEMISTRY (UG & PG), JHARGRAM RAJ COLLEGE LESSON PLAN (SESSION: 2019-2020)

TEACHER: DR. ANSUMAN BEJ (ORGANIC CHEMISTRY)

UG SEMESTER-I

PAPER: CC1T (ORGANIC CHEMISTRY)

PERIOD	TOPIC(S) TO BE COVERED
October 2019	Valence Bond Theory
November 2019	Electronic displacementsin covalent bond.
December 2019	MO theory and π -MO of alkene, conjugated diene and triene system.
January 2020	University question practice and Class test

PAPER: DSC1A (FOR GFENERAL COURSE]

PERIOD	TOPIC(S) TO BE COVERED
November 2019	Physical Effects, Electronic Displacements
December 2019	Aliphatic Hydrocarbons alkanes and alkenes.
January 2020	Practice sessions

UG SEMESTER-II

PAPER: CC4T (ORGANIC CHEMISTRY)

PERIOD	TOPIC(S) TO BE COVERED
March 2020	Reaction thermodynamics: free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE, intermolecular & intramolecular reactions.
April 2020	Concept of organic acids and bases: effect of structure, substituent and solvent on acidity and basicity; proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity.
May 2020	Tautomerism: prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazo-amino and enamine-imine systems); valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems.

PAPER: CC4P (ORGANIC CHEMISTRY LAB-I)

PERIOD	TOPIC(S) TO BE COVERED
March 2020	PREPARATION OF ORGANIC COMPOUND, NITRATION OF AROMATIC
	COMPOUNDS, CONDENSATION REACTIONS, ACETYLATION OF
	PHENOLS/AROMATIC AMINES.
April 2020	ACETYLATION OF PHENOLS/AROMATIC AMINES, SELECTIVE REDUCTION OF
	<i>M</i> -DINITROBENZENE TO <i>M</i> -NITROANILINE.
May 2020	BROMINATION OF ANILIDES USING GREEN APPROACH (BROMATE-
	BROMIDE METHOD)

UG SEMESTER-III

PAPER: CC-7T (ORGANIC CHEMISTRY-II), CARBONYL CHEMISTRY (20 Lectures)

PERIOD	TOPIC(S) TO BE COVERED
August 2019	Addition to C=O: structure, reactivity and preparation of carbonyl compounds; mechanism (with evidence), reactivity, equilibrium and kinetic control; Burgi- Dunitz trajectory in nucleophilic additions; formation of hydrates, cyano hydrins and bisulphite.
September 2019	Nucleophilic addition-elimination reactions with alcohols, thiols and nitrogen- based nucleophiles; reactions: benzoin condensation.

PERIOD	TOPIC(S) TO BE COVERED
October2019	Cannizzaro and Tischenko reactions, reactions with ylides: Wittig and Corey-
	Chaykovsky reaction; Rupe rearrangement.
November 2019	Oxidations and reductions: Clemmensen, Wolff-Kishner, LiAlH ₄ , NaBH ₄ , MPV,
	Oppenauer, Bouveault-Blanc, acyloin condensation; oxidation of alcohols with
	PDC and PCC; periodic acid and lead tetraacetate oxidation of 1,2-diols.

PAPER: CC-7P (ORGANIC CHEMISTRY LAB), FUCTIONAL GROUP DETECTION- I (20 Lectures)

PERIOD	TOPIC(S) TO BE COVERED
August 2019	Detection of special elements, Solubility and classification.
September 2019	Detection of the following functional groups by systematic chemical tests.
October 2019	Detection of the following functional groups by systematic chemical tests
November 2019	Preparation, purification and melting point determination of a crystalline
	derivative of the given compound.
	Identification of the compound through literature survey.

UG SEMESTER-IV

PAPER: CC-10T (ORGANIC CHEMISTRY), FUCTIONAL GROUP DETECTION-I (20 Lectures)

PERIOD	TOPIC(S) TO BE COVERED
February 2020	Wagner-Meerwein rearrangement, pinacol rearrangement, dienone- phenol; Wolff rearrangement in Arndt-Eistert synthesis, benzil-benzilic acid rearrangement, Demjanov rearrangement, Tiffeneau–Demjanov rearrangement.
March 2020	Rearrangement to electron-deficient centre: rearrangements: Hofmann, Curtius, Lossen, Schmidt and Beckmann, Baeyer-Villiger oxidation, cumene hydroperoxide-phenol rearrangement and Dakin reaction.
April 2020	<i>Migration from oxygen to ring carbon</i> : Fries rearrangement and Claisen rearrangement, Fries rearrangement, Claisen rearrangement, Beckmann rearrangement, Baeyer-Villiger oxidation.
May 2020	Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, Fischer-Hepp rearrangement, N-azo to C-azo rearrangement, Bamberger rearrangement, Orton rearrangement and benzidine rearrangement.
PERIOD	TOPIC(S) TO BE COVERED
February 2020	Colligative properties: thermodynamic treatment, applications, abnormalities
March 2020	Phase rule: thermodynamic derivation, one- and multi-component systems
April 2020	First order phase transition and Clapeyron equation
May 2020	Binary solutions; Class tests

PAPER: CC-10P (ORGANIC CHEMISTRY LAB), Quantitative Estimations (20 Lectures)

PERIOD	TOPIC(S) TO BE COVERED
February 2020	Estimation of glucose by titration using Fehling's solution, Estimation of
	sucrose by titration using Fehling's solution,
March 2020	Estimation of vitamin-C, Estimation of aromatic amine (aniline) by bromination (Bromate-Bromide) method, Estimation of phenol by bromination.
April 2020	Estimation of urea, Estimation of formaldehyde.

UG SEMESTER-V

PAPER: CC12T (ORGANIC CHEMISTRY): Carbocycles and Heterocyclic compounds (25 Lectures)

PERIOD	TOPIC(S) TO BE COVERED
July 2019	Polynuclear hydrocarbons and their derivatives, synthetic methods include
	Haworth, Bardhan-Sengupta, Bogert-Cook and other useful syntheses (with
	mechanistic details); fixation of double bonds and Fries rule.
August 2019	Property of heterocyclic compound with single heteroatom.
September 2019	Synthesis of some five and six membered heterocyclic compound.
October 2019	Chemical reactions of heterocyclic compounds.

PAPER: CC12T (ORGANIC CHEMISTRY LAB): Spectroscopic Analysis of Organic Compounds (10 Lectures)

PERIOD	TOPIC(S) TO BE COVERED
July 2019	Assignment of labelled peaks in the ¹ H NMR spectra of the known organic
	compounds.
August 2019	Assignment of labelled peaks in the IR spectrum of the same compound
	explaining the relative frequencies of the absorptions.
September 2019	Analysis of full spectra of some compound.
October 2019	Analysis of full spectra of some compound.
November 2019	Analysis of full spectra of some compound.

UG SEMESTER-VI

PAPER: DSE3T: (GREEN CHEMISTRY): (10 Lectures)

PERIOD	TOPIC(S) TO BE COVERED		
January 2020	Examples of Green Synthesis/ Reactions and some real world cases.		
February 2020	Examples of Green Synthesis/ Reactions and some real world cases.		
March 2020	Future Trends in Green Chemistry		
PAPER: DSE3P: (GR	PAPER: DSE3P: (GREEN CHEMISTRY LAB): (10 Lectures)		
PERIOD	TOPIC(S) TO BE COVERED		
January 2020	Preparation of biodiesel from vegetable/ waste cooking oil.		
February 2020	Photoreduction of benzophenone to benzopinacol in the presence of sunlight.		

PG SEMESTER-I

PAPER: CEM 102 (ORGANIC CHEMISTRY):

PERIOD	TOPIC(S) TO BE COVERED	
October 2019	Unit-1: Pericyclic reaction-1	
November 2019	Unit-1: Organic transformations by using pericyclic reaction.	
December 2019	Unit-1: Synthesis of organic compound by using pericyclic reaction.	
PG SEMESTER-II		

PAPER: CEM 202 (ORGANIC CHEMISTRY):

PERIOD	TOPIC(S) TO BE COVERED
February 2019	Unit-1: Pericyclic reaction-2
March 2019	Unit-2: Reagents chemistry-2

PG SEMESTER-III

PAPER: CEM 302 (ORGANIC CHEMISTRY SPECIALIZATION):

PERIOD	TOPIC(S) TO BE COVERED		
September 2019	Unit-1: Pericyclic Reaction-III		
October 2019	Unit-1: Pericyclic Reaction-III		
November 2019	Unit-4: Organometallic Chemistry		
PAPER: CEM 303 (ORGANIC CHEMISTRY SPECIALIZATION):			
PERIOD	TOPIC(S) TO BE COVERED		
September 2019	Unit-5: Peptides and Nucleic acids		
October 2019	Unit-6: Green Chemistry.		
PAPER: CEM 395 (ORGANIC CHEMISTRY SPECIALIZATION):			
PERIOD	TOPIC(S) TO BE COVERED		
September 2019			
– December 2019	Review work in an area of transition metal naoparticle catalysed reaction.		
(16 weeks)			

PG SEMESTER-IV

PAPER: CEM 401 Advanced Spectroscopy-II (COMMON PAPER):

PERIOD	TOPIC(S) TO BE COVERED		
February 2020	Unit-1: NMR Spectroscopy I		
March 2020	Unit-3: NMR Spectroscopy I		
PAPER: CEM 403 (ORGANIC CHEMISTRY SPECIALIZATION):			
PERIOD	TOPIC(S) TO BE COVERED		
February 2020	Unit-2: Stereochemistry IV		
March 2020	Unit-3: Stereochemistry V		
April 2020	Unit-4: Stereochemistry VI		
PAPER: CEM 495 (ORGANIC CHEMISTRY SPECIALIZATION):			
PERIOD	TOPIC(S) TO BE COVERED		
February 2020 – May 2020 (16 weeks)	Review work in an area of transition metal naoparticle coupling reaction reaction of aryl aryl amine and phenylboronic acid.		